MICROELECTRONIC CIRCUIT DESIGN

THIRD EDITION

by

RICHARD C. JAEGER and TRAVIS N. BLALOCK


Third Edition Errata - Updated 6/1/08


 

Text Corrections

Page 33      The first answer to the exercise at the bottom of the page should be 9.20      kohms.

Page 46      The units on the vertical axis of Fig. 2.4 should be cm-3.

Page 108     Exercise:   2.13 mA, 1.13 mA, -1.27 V

Page 117     Exercise: 0.912 ms, 19.7o

Page 118     Exercise at bottom: 0.994 V, 1.07 V

Page 169     The first line of Table 4.2:  The parameters for Our Text should be K'n or K'p.

Page 172     Units in the equation near the bottom of the page should be A/V2

Page 178     Third exercise (25.4 uA, 6.52 V)

Page 182     Exercise answer should be 83.2 uA

Page 186     Exercise (2.22 uA, 2.96 mV)

Page 192     Last exercise 127 GHz

Page 193     Near the end of the first sentence: 105 V/cm

Page 217     Last answer in exercise - 1.07 mA

Page 223     Exercise answers (b) 0.300 fA, 5.26 aA, -0.305 fA

Page 229     VCE in second exercise should be 5.44 V

Page 237     The units on Dn in the exercise are cm2/s.

Page 240     First exercise - 1.24 uF

Page 250     Q-Point: (206 uA, 4.18 V)

Page 278     Fig. 6.3(a):  Remove the labels and arrows indicating NML and NMH.

Page 281     Center of Fig. 6.5:  Left-hand tPLH should be tPHL

Page 302     Exercise;  IDD = 278 uA

Page 305     Given Data in Ex. 6.7: 0.20 mW

Page 306     In the figure, the voltages should be VDSS = 0.20 V     VDSL = 3.10 V

Page 321     Spice Results Table: 11000   132   64.4   0  | 11100   64.6   31.9   31.9

Page 330     Exercise:  4.47 ns --> 4.97 ns,  3.84 ns --> 2.84 ns

Page 358     Exercise:  1.27 V

Page 362     C = 0.75 pF in the first exercise.  TauP = 2.4 x (2pF/0.75pF) x (2/1)/(8/1) = 1.6 ns  Also "delay of 1.6 ns" just above the equation.  The delay in Fig. 7.13(b) is also 1.6 ns.

Page 362     In the second exercise:  (W/L)P = 78.8/1   (W/L)N = 31.5

Page 380     Execise: P = 12.5 mW

Page 403     Second exercise:  The substrates of the PMOS devices must also be connected to VDD.

Page 411     Exercise: Fall time = 1.30 ns.

Page 420     Exercise: P = 1.0 mW.

Page 424     Exercise: 3.00 V   (3.66 V corresponds to an input of 5 V in Fig. 8.35(b).)

Page 454     Exercise: -VEE = -5.2 V

Page 456     The frequency used in the simulations is 2000 Hz, not 1000 Hz.

Page 461     Exercise answers 1.66 ns, 6.0 pJ

Page 464     Second line in Section  9.9.2 should refer to Eq. (5.30)

Page 466     First exercise: 6.00 --> 3.00

Page 469     -5.49 mA

Page 479     What is iL if Q4   Answers: 92.3 mA; 9.16 mA; no

Page 512     Fig. 10.5(b): The input signal for this plot is 100 mV as in Fig. 10.4 but biased at   0.4 V.

Page 519     262 ohms --> 3.82mS  (1/262 ohms)

Page 520     (Av)2(RS+Rin)/RL

Page 531     The numerator coefficient should be 6 x 106.

Page 533     The numerator of the transfer function should be multiplied by "s".   Answers: 25.8 kHz, 25.7 kHz

Page 549     Example 11.2:  The gain of E1 should be negative,  -109.  Ignore the first two answers in the exercise.

Page 559     Third example: -18.0, 4.50 V, -92.1 uA

Page 573     In the figure, voltage gain block E1 is upside down, and its negative input should be connected to the output terminal. Also, Gain = +106.

Page 577     Sensitivity = 3Q-1 = 1.12

Page 583     Q = 0.471

Page 587     First exercise:  VZ > 15.6 V

Page 594     Tr = 13.0 us

Page 617     44.2, 36.2, 4.20 (10.5 %), -3.60 (-9.5 %)

Page 624     Middle of the page:  VCM = 5.0 V    and     CMRR ≥ 3.65 x104

Page 626     Example 12.6:  Known information: A = 80 dB

Page 645     Second denominator:  s + 3.16p x 104

Page 647     4190 Hz

Page 656     SPICE Results: Rin = 28.9 x 1012 ohms

Page 670     Caption to Fig. 13.1:  similar bit larger -> similar but larger

Page 673     First Exercise (1.45 mA, 3.57 V)

Page 692     The exercise is misplaced in the text and should refer to, and follow, Exercise 13.4.  -130 should be -159, -222 should be -176, and 42% should be 10%.

Page 693    Ignore l = 0.0133/V.

Page 697    The second exercise should refer to capacitor C2, and -145 should be -159.

Page 700    VAF should be 75 V in the SPICE simulation.  Both exercise should refer to RiC, not Rout.  The exercise answers should be RiC = 4.85 Mohms < 6.28 Mohms. (Rout = 21.9 kohms).

Page 704    40.0 should be 41.5

Page 717    Second exercise:  -12.5 --> -24.4

Page 725    The SPICE value of the input resistance should be 14.8 kohms, not 16.0 kohms.

Page 726    Exercise: 2220--2150

Page 726    Example 13.10 - "with feedback bias" should be deleted

Page 734   In the second exercise, 9.5 V should be 4.5 V.

Page 761   Last exercise should refer to Fig.14.2.  Answers: 78.1 kohms, 892 kohms

Page 766   In the equation at the top of the page, 116 kohms --> 1.16 Mohms twice.

Page 767   Exercise - Largest values of vi    0.569 V --> 0.580 V

Page 772   Ini Eq. (14.310, R4 --> R6

Page 778   Second Exercise: 10.4, 5.04; Third exercise: 8.48 <10.4<<176, 4.11<8.48<10.5

Page 796   0.579 uF --> 6.8 uF, 12.2 nf --> 0.12 uF, 6.13 nF --> 0.068 uF;  0.232 uF --> 2.2 uF, 714 pf --> 8200 pF, 6.19 nF --> 0.068 uF

Page 797   795 --> 820 pF; 0.039 --> 0.042 uF

Page 800   Eq. (14.68): VDD + VGS - vs ≥ VGS - VTN  or  VDD ≥ vgg - VTN = vgg - 1.5 V

                Note that vGS = VGS + vgs = VGS + (vgg - vs)

Page 803   The emitter arrow should point into the transistor in Fig. 14.33.

Page 808   Eq. (14.88), VP should be VTN.

Page 811   Second exercise JFET --> FET; Last exercise: -200, -50.0.

Page 820   Last exercise 1840 should be 1150

Page 842   SPICE results: VCE-VBE = 7.90 V and BF = 116

Page 851   5.20 --> 5.30

Page 858   4.9 Gohm --> 4.8 Gohm

Page 893   9.34 V --> 9.96 V; 200 uA --> 189 uA; 10.6 Mohm --> 10.3 Mohm

Page 903   5.94 Mohm, 1.19 Mohm

Page 906   224 ohm --> 2.24 kohm

Page 915   5th line above check of results: Kn = 1.25 mS/V.

Page 932   1.25 V --> 1.37 V

Page 938   SPICE Exercise Results: 64.164 uV, 0.520

Page 992   C2 and C3 are reversed in Fig. 16.4(c).

Page 995   At the top of the page, the results for wZ2 and wZ3 should be interchanged.

Page 996   First exercise "… if the value of C2 is reduced…"

Page 999   Second exercise answers: 33.6 ms, 1.47 ms, 14.3 ms, 124 Hz

Page 1005 Second exercise answers: 24.4 ms, 1.16 ms, 6.66 Hz, 0.550

Page 1019 Eq. (16.80):  Beta1 should be RI

Pages 1021 & 1030 Examples 16.6 and 16.7:  C1  =  C2  =  3.9 uF,  C3  =  0.082 uF

Page 1023 Second exercise: 445 MHz; ignore the comment.  Third exercise: -135, 837 kHz, 525 MHz

Page 1026 Fig. 16.38(b): The current source value is ix and vx is the voltage across ix.

Page 1031 Second exercise: -29.3, 6.70 MHz, 196 MHz

Page 1033 First exercise: 48.2, 18.7 MHz, 903 MHz

Page 1041 4.20 MHz --> 6.27 MHz; ignore comment.

Page 1041 Eq. (16.152): At end, "phi" should be zero: rp01

Page 1042  22.7 MHz --> 11.6 MHz

Page 1043 Exercise: 159 kHz, 39.8 kHz;  C1 should be 0.01 uF in Fig. 16.52(b).

Page 1145, Eq. (17.142) The "s" term should be     s[(C3 + CGD)G +gmCGD]

Page 1050 Second exercise: 29.6 --> 23.9, 6.29 --> 5.07, 296 --> 239

Page 1053 First exercise: 4.59 MHz, 093.3 kHz, 49.2, -80.2.  Ignore the comment at end.  Second exercise: 4.59 MHz.

Page 1086 First exercise: +39.1 mS.  Second exercise: -252 kohms, -0.01 mS, -71.6 kohms, 605 ohms, 863 ohms.

Page 1110 In the exercise, RI should be RD.

Page 1122 Exercise: 27.6 o --> 69.4o

Page 1127 Exercise should read fT, fZ, and fB

Page 1130 Extraneous "2" in Avt2 expression immediately after RC1

Page 1144 Exercises: 15.9 kHz

 

Problem Statements

2.48       The second dimension in Fig. P2.48 should be 2 mm, not 3 mm

4.39       Page (c) should refer to Fig. P4.39(b).

4.134     VDS = -5 V

7.91       Use VDD = 2.5V

8.23       CBL = 500 fF

11.10 & 11.18      VS should be vS

11.69     3-kohms should be 3-kohms

13.33     RS = 1 kohms and R4 = 1 kohms

14.1       In Fig. 14.1(m), the power supply should be positive: +VDD.

14.14     VCC = 15 V, -VEE = -15 V

14.69     C3 = 2.2 uF.

14.76     Ignore reference to C3.

14.115   C3 = 2.2 uF

14.122   C1 = C2 =C3 = 1 uF.

15.96     Ignore the last sentence in the problem statement.

15.203   Problem should refer to Prob. 15.202.

16.57     This problem is a follow-on to Ex. 16.6 on page 1021 which uses current gain = 100 and infinite Early voltage.

16.58     VCC = +12 V.

16.65     Problem should refer to Prob. 16.14(e).

16.83     RL is connected between the collectors of transistors Q1 and Q2.

17.104   The transistor parameters should be Kp = 1.25 mA/V2 and VTN = -4 V.

17.108   RS = 820 ohms, and the transistor parameters should be Kp = 1.25 mA/V2 and VTN = -4 V.


Go Back